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We analyze the size limits of coupled map lattices with diffusive coupling at the crossover of low-
dimensional to high-dimensional chaos. We investigate the existence of standing-wave-type periodic patterns,
within the low-dimensional limit, in addition to the stable synchronous chaotic states depending upon the initial
conditions. Further, we bring out a controlling mechanism to explain the emergence of standing-wave patterns
in the coupled map lattices. Finally, we give an analytic expression in terms of the unstable periodic orbits of
the isolated map to represent the standing-wave patterns.
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I. INTRODUCTION

Coupled dynamical systems often arise in nature when-
ever a collective or cooperative phenomenon is favored
�1–4�. In particular, the coupled map lattice with diffusive
coupling �CML� provides a prototype model to study various
features associated with the cooperative evolution of con-
stituent systems �5–9�. One of the important properties of
such CMLs is that they exhibit size instability, that is, there
is a critical size on the number of constituents for which
stable synchronous chaotic state exists. Increasing the num-
ber of constituents beyond this limit leads to the occurrence
of spatially incoherent behavior �e.g., high-dimensional
chaos�. For example, Bohr and Christensen �10� have studied
such size instability behavior in a two-dimensional coupled
logistic lattice. Similar desynchronization has been found in
arrays of coupled systems represented by nonlinear oscilla-
tors �4,11–13�. The stability of synchronous chaos in coupled
dynamical systems plays an important role in the study of
pattern formation, spatiotemporal chaos, etc. �4,10,11,14,15�.

In general, these studies on size instability are valid in
most situations. However, we have noted that in certain cir-
cumstances there is an ambiguity in dealing with these sys-
tems below the critical system sizes. To be specific, there
exist certain nontrivial ranges of initial conditions for which
the CML admits spatial and temporally periodic solutions in
contrast to the usually expected stable synchronous chaos. In
this Brief Report, we show numerically the coexistence of
such periodic states with the stable synchronous chaotic state
well below the critical system size and explain the underly-
ing mechanism.

II. SIZE INSTABILITY IN COUPLED MAP LATTICES
WITH DIFFUSIVE COUPLING

Consider a one-dimensional coupled map lattice with
nearest-neighbor diffusive coupling �5,6�

xn+1
j = f�xn

j � + ��f�xn
j−1� + f�xn

j+1� − 2f�xn
j �� , �1�

where j �=0,1 ,2 , . . . ,L−1� represents the lattice sites and L
is the system size, subject to periodic boundary conditions.

The stability analysis of the synchronized chaotic state
defined by sn=x0=x1= . . . =xL−1 in the above CML using the

procedure derived originally for coupled oscillators by
Heagy et al. �11�, gives the relation connecting transverse
Lyapunov exponents �TLEs�, in terms of the Lyapunov ex-
ponent of single �isolated� map, �0 as

�k = �0 + ln�1 − 4� sin2��k

L
�� . �2�

The synchronous state is stable only if the TLEs
��k ,k=1,2 , . . . ,L−1� are all negative.

The above relation �2� can also be obtained by means of a
direct perturbation of the form

xn
j = sn + � exp�i

2�k

L
�exp��kn�, � � 1, �3�

as considered by Bohr and Christensen �10�.
The synchronous state loses its stability when the long

waves �lowest mode� are unstable �10�. This means that for
�1�0 the synchronous state is unstable. Thus, substituting
�1=0 in Eq. �2�, one obtains the maximum/critical lattice
size �Lc� that supports stable synchronous state as

Lc = int	 �

sin−1�
1 − e−�0

4�
�� . �4�

Now, let us consider a coupled logistic lattice with diffusive
coupling �CLL� where each lattice site in Eq. �1� is occupied
by the logistic map

f�x� = �x�1 − x�, x � �0,1�, � � �0,4� . �5�

In particular for the choice �=3.5732, the Lyapunov expo-
nent of single �isolated� map is positive �i.e., �0�0.057�0�
and chaotic. In this case, for coupling strength �=0.2, the
critical lattice size �Lc� is found to be 11 from Eq. �4�. That
is, up to the lattice size 11 the CLL exhibits synchronous
chaos and for lattice size �12 the synchronization is found
to be lost, thereby confirming the size instability in the dif-
fusively coupled logistic lattices.
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III. EXISTENCE OF MULTIPLE STABLE STATES IN
COUPLED MAP LATTICES

When random initial conditions are assumed, in most
cases, the above CLL with diffusive coupling exhibits stable
synchronous chaos for 2	L	11 as predicted by Eq. �4�.
However, there are certain ranges of initial conditions for
which CLL shows some interesting asynchronous spatiotem-
poral patterns even for L
Lc. For example, for L=8 and
with the choice of initial conditions x0

j � j=0
L−1

= 0.1,0.01,0.7,0.2,0.65,0.1,0.15,0.001� or several nearby
initial conditions, the CLL exhibits a standing wave type
pattern as shown in Fig. 1�a�. But for the same lattice size, if
we choose a different set of initial conditions
x0

j � j=0
L−1= 0.0004, 0.0001, 0.0003, 0.0005, 0.00045, 0.00018,

0.00016,0.00001� or the nearby points, two standing waves
with different amplitudes are produced within the CLL as in
Fig. 1�b�. Similarly a disturbed standing wave pattern as
shown in Fig. 1�c� is possible to be exhibited by the CLL for
many choices of initial conditions. A synchronous chaos, as
one would expect for L=8 from the theory, is also exhibited
by the CLL as depicted in Fig. 1�d� for most of the random
choices of initial conditions. This kind of multiple stable
solution is also observed in the CLL for other lattice sizes,
namely, L=6, 7, 9, and 10, which are also less than Lc. The
occurrence of various spatiotemporal patterns for different
lattice sizes of the CLL and their percentage of occurrence
are shown in Table I. In order to quantify the percentage of
occurrence of different spatiotemporal patterns, we have
used 106 sets of random initial conditions �IC’s� in the inter-
val 0 to 1 and identified the number of IC’s that lead to a
specific pattern as indicated in Table I. We have further con-

firmed our assertion by analyzing the same systems in differ-
ent computing environments such as Intel Pentium 4, Sun
Sparc server/workstation and Compaq Alpha workstation.

In addition, by considering the whole CML of size L as a
single L-dimensional map we have verified that the above
spatiotemporal periodic structures are essentially the stable
fixed points of this map. For example, the periodic structure
in Fig. 1�a� represents a fixed point of period 2 of the
eight-dimensional map, and the eigenvalues of the corre-
sponding Jacobian matrix all have magnitude less than unity.
In a similar fashion one can verify that all the periodic struc-
tures are the stable fixed points of corresponding periods.
Thus, in addition to the stable synchronized manifold, there
exist other invariant sets corresponding to stable periodic
structures.

IV. EMERGENCE OF STANDING-WAVE PATTERNS BY
CONTROLLING

The extraordinary behavior of the CML with diffusive
coupling showing standing-wave patterns well below the
critical lattice size �Lc� can be explained as follows. The
second term in the right-hand side of Eq. �1� can be consid-
ered as a kind of force or perturbation applied to every lattice
point in the CML and we call it the coupling force. In fact
this force on a particular lattice point is developed either due
to a mismatch in the parameters of the neighboring lattice
points, or due to differences in their initial conditions, or
both. If the neighboring lattice points are identical then this
force is formed due to variation in the initial conditions and
our system indeed falls under this category. In general, the
strength of the coupling force at all the lattice points ap-
proaches zero when they oscillate towards synchronization
with their neighbors, and usually this will happen for
L	Lc. But in the case of L�Lc, this force at every lattice
point oscillates periodically or in a chaotic manner, giving

FIG. 1. �Color online� The possible spatiotemporal patterns in
coupled logistic lattice �1� and �5� with L=8 for different initial
conditions. �a� Single standing wave, �b� double standing waves, �c�
single standing wave with a temporal period-2 orbit in one half and
period-4 orbit in the other half of the lattice and, �d� synchronized
chaos.

TABLE I. The possible spatiotemporal patterns for different lat-
tice sizes and their percentage of occurrence for the coupled logistic
lattice sampled over a set of 106 random initial conditions �IC’s�.
The parameters are fixed as �=3.5732 in Eq. �5� and �=0.2 in Eq.
�1�. Here, SW: standing wave, sync.: synchronized.

Size
�L�

Spatiotemporal
patterns

% of
IC’s

Size
�L�

Spatiotemporal
patterns

% of
IC’s

6 single SW 9 10 double SWs 43

sync. chaos 91 sync. chaos 45

7 single SW 22 others 12

sync. chaos 78 11 double SWs 48

8 single SW 21 four SWs 2

double SWs 10 sync. chaos 34

sync. chaos 66 others 16

others 3 12 double SWs 24

9 double SWs 38 four SWs 28

sync. chaos 54 sync. chaos 0.2

others 8 others 47.8
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rise to various spatiotemporal patterns, including standing
waves. However, as we have pointed out above that under
certain circumstances �i.e., for certain ranges of initial con-
ditions�, even for L
Lc, the coupling force of each and ev-
ery lattice point oscillates periodically with different ampli-
tudes and thereby makes the CML exhibit spatiotemporal
periodic �standing-wave� solutions. In general, the periodic
oscillations in the coupling force may be of any period and
this fixes the number of standing waves produced within the
lattice.

In order to understand the mechanism behind the emer-
gence of spatiotemporal periodic structure, let us now con-
sider a specific case of the periodically oscillating coupling
force of period 2, that is, the force oscillating between two
fixed amplitudes, say k1 and k2, so that a single standing
wave is formed in the CML. Then the amplitudes of the
coupling force at the jth lattice site will alternate between the
numerical values k1

j and k2
j , where j=1,2 , . . . ,L. Thus, the

evolution of jth map in the CML can be effectively described
by the equation

xn+1
j = f�xn

j � + k1
j , xn+2

j = f�xn+1
j � + k2

j . �6�

For a given lattice point j, this is nothing but a single logistic
map with a periodic kick of period 2 �modified map�. It is
now obvious to note from Eqs. �6� and �1� that the original
coupled map lattice exhibiting a standing wave pattern can
be decomposed into L number of modified maps such that
the dynamics of Eq. �1� is essentially mimicked by the set
�6�. Thus studying the evolution of L decoupled modified
maps �6� with allowed sets of values for k1

j and k2
j is equiva-

lent to that of the original CML, given by Eq. �1�.
In general, a chaotically evolving system can be con-

trolled to a stable periodic orbit by the addition of an appro-
priate constant or periodic external bias �3,16–19�. As a con-
sequence, one can expect a stable fixed point solution for the
modified map �6� for appropriate forcing amplitudes �k1 and
k2�, with same set of parameters for which the original map
xn+1

j = f�xn
j �, exhibits chaotic solution. Thus there exists a pos-

sibility for obtaining periodic solutions of period two for the
constituent map within the CML even though its parameter is
in the chaotic region of the individual map.

In the case of coupled logistic lattice with parameters
mentioned in the previous section, the allowed region of
forcing amplitudes that lead the decoupled modified map �6�
to exhibit period two solution is shown in Fig. 2. For L=8,
we have calculated the amplitudes of the coupling force
�that is, the second term in the right-hand side of Eq. �1��
of period 2 for the initial conditions x0

j � j=0
L−1

= 0.1,0.01,0.7,0.2,0.65,0.1,0.15,0.001�, and these are
shown in Table II. Now one can easily check that these am-
plitudes of the coupling force fall in the region specified by
the phase diagram shown in Fig. 2. Also, the shift invariant
property of the CLL ensures that there is no temporal varia-
tion if we shift the initial conditions of each lattice point in
the CML to its neighbour spatially. In this case, the wave
pattern will also make only a corresponding shift. We have
made similar investigations for higher periodic standing
waves, which lead to the same type of conclusions based on
the appropriate periodic nature of the coupling force.

So, if it is possible to control the coupling force to fall in
the region which corresponds to a periodic solution, then one
can obtain standing wave patterns irrespective of the size of
the lattices. This is in fact possible by choosing appropriate
initial conditions to each lattice point and this explains the
occurrence of standing waves �asynchronous� as shown in
Figs. 1�a� and 1�b� in the CLL well below the critical lattice
size �Lc�. A similar explanation holds good for Fig. 1�c�. The
same principle is involved in the occurrence of standing
waves even for L�Lc �6�.

V. ANALYTICAL EXPRESSION FOR STANDING WAVE
PATTERNS

From a careful numerical analysis, we have observed that
the nodes and antinodes of standing waves are formed at or
very close to the UPOs of the isolated logistic map. Keeping
this in mind, we propose an expression for the standing wave
pattern �20� of the form

xj = uk + Ak sin�m��j − ��
L

�cos��i� , �7�

where

FIG. 2. The phase diagram in the k1-k2 plane for the modified
map �6� with f�x�=�x�1−x�, �=3.5732, showing the regions which
correspond to the periodic solution of period 2 �dark region�.

TABLE II. Amplitudes of the coupling force k1 and k2 in the
coupled map lattices for L=8 with period-2 for initial conditions
x0

j � j=0
L−1= 0.1,0.01,0.7,0.2,0.65,0.1,0.15,0.001�.

Lattice
site �j� 102k1

j 102k2
j

Lattice
site �j� 102k1

j 102k2
j

1 −0.17626 3.24717 5 3.24717 −0.17626

2 −5.98282 2.91190 6 2.91190 −5.98282

3 2.91190 −5.98282 7 −5.98282 2.91190

4 3.24717 −0.17626 8 −0.17626 3.24717
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Ak = �Ak
max if sin�m��j − ��

L
�cos��i� � 0,

Ak
min if sin�m��j − ��

L
�cos��i� 
 0,�

where the discrete index j=0,1 ,2 , . . . ,L−1 corresponds to
the lattice site, m denotes the mode of the waves, and k and
i represent the nodes and antinodes of different standing
waves present in the pattern, which can take values from 1 to
p and 1 to 2p, respectively and p is the period of UPO. Also
in the above Eq. �7�, uk’s represent the values of the UPOs of
the isolated logistic map at the node of the kth standing
wave, and Ak

max and Ak
min are the absolute values of the dif-

ferences between UPOs at the node and UPOs at high and
low amplitudes at the antinodes of the kth standing waves,
respectively. The wave patterns with one and two number of
standing waves obtained using Eq. �7� for L=8 are shown in
Fig. 3, whereas for the same lattice size, the numerically
obtained patterns which have been discussed in Sec. III are
shown in Figs. 1�a� and 1�b�. One observes that these two
figures coincide very closely.

VI. SUMMARY AND CONCLUSION

In this report, we have pointed out that coupled map lat-
tices with diffusive coupling exhibit multiple stable states for
the same set of parameters with respect to the initial condi-
tions. It has also been shown that by choosing appropriate
initial conditions, one can obtain different standing wave

type patterns for such coupled map lattices even for a lattice
size much less than the critical system size Lc, where one
normally would expect synchronized chaos. In addition, we
have proposed the mechanism behind the occurrence of such
standing wave patterns.
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FIG. 3. �Color online� Standing wave patterns obtained from Eq.
�7� for L=8: �a� standing wave with period-1 UPO at nodes and
period-2 UPO at antinodes and �b� period-2 UPO at nodes and
period-4 UPO at antinodes.
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